Developing postmitotic mammalian neurons in vivo lacking Apaf-1 undergo programmed cell death by a caspase-independent, nonapoptotic pathway involving autophagy.

نویسندگان

  • Ronald W Oppenheim
  • Klas Blomgren
  • Douglas W Ethell
  • Masato Koike
  • Masaaki Komatsu
  • David Prevette
  • Kevin A Roth
  • Yasuo Uchiyama
  • Sharon Vinsant
  • Changlian Zhu
چکیده

Previous studies have shown that caspases and Apaf-1 are required for the normal programmed cell death (PCD) in vivo of immature postmitotic neurons and mitotically active neuronal precursor cells. In contrast, caspase activity is not necessary for the normal PCD of more mature postmitotic neurons that are establishing synaptic connections. Although normally these cells use caspases for PCD, in the absence of caspase activity these neurons undergo a distinct nonapoptotic type of degeneration. We examined the survival of these more mature postmitotic neuronal populations in mice in which Apaf-1 has been genetically deleted and find that they exhibit quantitatively normal PCD of developing postmitotic neurons. We next characterized the morphological mode of PCD in these mice and show that the neurons degenerate by a caspase-independent, nonapoptotic pathway that involves autophagy. However, autophagy does not appear to be involved in the normal PCD of postmitotic neurons in which caspases and Apaf-1 are present and functional because quantitatively normal neuronal PCD occurred in the absence of a key gene required for autophagy (ATG7). Finally, we examined the possible role of another caspase-independent type of neuronal PCD involving the apoptosis-inducing factor (AIF). Mice deficient in AIF also exhibit quantitatively normal PCD of postmitotic neurons after caspase inhibition. Together, these data indicate that, when key components of the type 1 apoptotic pathway (i.e., caspases and Apaf-1) are perturbed in vivo, developing postmitotic neurons nonetheless undergo quantitatively normal PCD by a caspase-independent pathway involving autophagy and not requiring AIF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Programmed cell death of developing mammalian neurons after genetic deletion of caspases.

An analysis of programmed cell death of several populations of developing postmitotic neurons after genetic deletion of two key members of the caspase family of pro-apoptotic proteases, caspase-3 and caspase-9, indicates that normal neuronal loss occurs. Although the amount of cell death is not altered, the death process may be delayed, and the cells appear to use a nonapoptotic pathway of dege...

متن کامل

The role of Apaf-1 in programmed cell death: from worm to tumor.

Apoptosis or programmed cell death is an important process to eliminate unnecessary or hazardous cells. Apaf-1, a mammalian homologue of CED-4 of C. elegans, is the essential adaptor molecule in the mitochondrial pathway of apoptosis. Mice lacking Apaf-1 show accumulation of neurons in the developing central nervous system due to reduced apoptosis. Apaf-1-deficient cells are remarkably resistan...

متن کامل

The Role of Caspase 9 during Programmed Cell Death in Ciliary Ganglia of Chick Embryos

During programmed cell death (PCD) apoptosis is controlled by many factors such as proteases. With no specific protease (s) known during PCD in the developing nervous system so far, we sought to determine if any specific protease (s) is involved in this process and therefore used different protease inhibitors during PCD (from embryonic day 6 to 10) in chick embryos. Among the inhibitors commerc...

متن کامل

Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel to the Canonical Pathway for Apoptosis in Caenorhabditis elegans

Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by...

متن کامل

Epistatic and independent functions of caspase-3 and Bcl-X(L) in developmental programmed cell death.

The number of neurons in the mammalian brain is determined by a balance between cell proliferation and programmed cell death. Recent studies indicated that Bcl-X(L) prevents, whereas Caspase-3 mediates, cell death in the developing nervous system, but whether Bcl-X(L) directly blocks the apoptotic function of Caspase-3 in vivo is not known. To examine this question, we generated bcl-x/caspase-3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 6  شماره 

صفحات  -

تاریخ انتشار 2008